TU Berlin

Aero EnginesPublications

Logo Fachgebiet Luftfahrtantriebe

Page Content

to Navigation

Publications at Chair of Aero Engines

Binary Repetitive Model Predictive Active Flow Control Applied to an Annular Compressor Stator Cascade With Periodic Disturbances
Citation key 2021_fietzke_jgtp
Author Fietzke, B. and Mihalyovics, J. and King, R. and Peitsch, D.
Pages GTP-21-1308
Year 2021
ISSN 0742-4795
DOI 10.1115/1.4052382
Journal Journal of Engineering for Gas Turbines and Power
Volume 144
Number 1
Month 12
Note 011029,
Also published as GT2021-58744, ASME Turbo Expo 2021, Virtual, Online - "https://doi.org/10.1115/GT2021-58744"

Technische Universität Berlin:
B. Fietzke, J. Mihalyovics, R. King, D. Peitsch
Publisher ASME
Abstract Novel pressure gain combustion concepts invoke periodic flow disturbances in a gas turbine's last compressor stator row. This contribution presents studies of mitigation efforts on the effects of these periodic disturbances on an annular compressor stator rig. The passages were equipped with pneumatic active flow control (AFC) influencing the stator blade's suction side, and a rotating throttling disk downstream of the passages inducing periodic disturbances. For steady blowing, it is shown that with increasing actuation amplitudes cμ, the extension of a hub corner vortex deteriorating the suction side flow can be reduced, resulting in an increased static pressure rise coefficient Cp of a passage. The effects of the induced periodic disturbances could not be addressed intrinsically, by using steady blowing actuation, Considering a corrected total pressure loss coefficient ζ*, which includes the actuation effort, the stator row's efficiency decreases with higher cμ due to the increasing costs of the actuation mass flow. Therefore, a closed-loop approach is presented to address the effects of the disturbances more specifically, thus lowering the actuation cost, i.e., mass flow. For this, a repetitive model predictive control (RMPC) was applied, taking advantage of the periodic nature of the induced disturbances. The presented RMPC formulation is restricted to a binary control domain to account for the used solenoid valves' switching character. An efficient implementation of the optimization within the RMPC is presented, which ensures real-time capability. As a result, Cp increases in a similar magnitude but with a lower actuation mass flow of up to 66%, resulting in a much lower ζ* for similar values of cμ.
Link to publication Download Bibtex entry

To top

Navigation

Quick Access

Schnellnavigation zur Seite über Nummerneingabe