direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Publications at Chair of Aero Engines

Numerical Assessment of Virtual Control Surfaces for Load Alleviation on Compressor Blades
Citation key 2018_motta_japplsci
Author Motta, V. and Malzacher, L. and Peitsch, D.
Pages 125
Year 2018
ISSN 2076-3417
DOI 10.3390/app8010125
Location Basel, Switzerland
Journal Journal of Applied Sciences
Volume 8
Number 1
Month 01
Note Technische Universität Berlin:
V. Motta, L. Malzacher, D. Peitsch
Publisher MDPI
How Published Creative Commons Attribution 4.0 International License CC-BY 4.0
Abstract Virtual control surfaces for the optimization of steady and unsteady airloads on a compressor cascade are assessed numerically. The effects of mechanical surfaces are realized with plasma actuators, located both on the pressure and on the suction side of the blade trailing edge. Suction side plasma actuation is thought to reproduce the effects of mechanical wing spoilers, whereas pressure side plasma actuation is meant to act as a mechanical Gurney flap. Indeed, actuators are operated to generate an induced velocity field that is opposite relative to the direction of the freestream velocity. As a consequence, controlled recirculating flow areas are generated, which modify the effective mean line shape, as well as the position of the Kutta condition application point—and in turn the developed airloads. Proper triggering of pressure/suction side actuation is found to be effective in altering the blade loading, with effects comparable to those of mechanical control surfaces. Traveling wave mode simulations show that significant reductions in the peaks of the blade pitching moment can be achieved on the whole spectrum of interblade phase angles. It is proved that virtual control surfaces can provide effective load alleviation on the cascade, with potential remarkable reduction of fatigue phenomena.
Link to publication Link to original publication Download Bibtex entry

To top

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.