Inhalt des Dokuments
Publikationen am Fachgebiet Luftfahrtantriebe
Zitatschlüssel | 2019_eck_jexfluid |
---|---|
Autor | Eck, M. and Rückert, R. and Peitsch, D. |
Seiten | 47 |
Jahr | 2019 |
ISSN | 0723-4864 |
DOI | 10.1007/s00348-019-2686-5 |
Ort | Switzerland |
Journal | Experiments in Fluids |
Jahrgang | 60 |
Nummer | 3 |
Monat | 02 |
Notiz | Technische Universität Berlin: M. Eck, R. Rückert, D. Peitsch |
Verlag | Springer |
Wie herausgegeben | Creative Commons Attribution 4.0 International License CC-BY 4.0 |
Zusammenfassung | The present paper introduces a novel approach for measuring near wall flow velocities by utilizing a sublayer surface fence probe. Hereby, a difference in static pressure builds up over a microscopic obstacle within the viscous sublayer. An analytical model of the angular dependent pressure difference is employed to derive information about the flow direction. Furthermore, a computational preston tube approach has been used to calibrate the surface fence probe with regard to a flow velocity to be assigned to half of the fence height. Through the use of a sophisticated analyzing algorithm the flow direction and its velocity can be determined as a function of time. As a proof of concept measurements were conducted within the radial gap of an annular compressor rig yielding both mean and time resolved near wall flow fields. Former are in very good compliance with oil flow visualizations proving the methods accuracy. The experimental results give unprecedented insights into an unsteady flow phenomenon that arises when an axial compressor is operating close to its stalling limit. The presented technique allows for investigating turbomachinery areas which formerly were observable only by computational means. |
Zusatzinformationen / Extras
Direktzugang
Schnellnavigation zur Seite über Nummerneingabe
Hilfsfunktionen
Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.