Inhalt des Dokuments
Publikationen am Fachgebiet Luftfahrtantriebe
Zitatschlüssel | 2019_neumann_n_gpps |
---|---|
Autor | Neumann, N. and Woelki, D. and Peitsch, D. |
Seiten | GPPS-BJ-2019-0198 |
Jahr | 2019 |
DOI | 10.33737/gpps19-bj-198 |
Ort | Beijing, China |
Journal | GPPS - Proceedings of Global Power and Propulsion Society Conference |
Monat | 09 |
Notiz | Technische Universität Berlin: N. Neumann, D. Woelki, D. Peitsch |
Herausgeber | GPPS |
Wie herausgegeben | Creative Commons Attribution 4.0 International License CC-BY 4.0 |
Zusammenfassung | Pressure gain combustion (PGC) is widely considered to improve gas turbine thermal efficiency substantially. However, there is no consensus on the modelling in gas turbine performance simulation. Even though it remains the main tool for design studies, the steady-state 0D representation has difficulties in modelling the inherently intermittent behaviour of pressure gain combustion. Selecting the optimal gas turbine design is therefore difficult as common PGC models tend to under- or overestimate performance. In this paper, an algebraic combustor model is inferred from published CFD data and varied to have an optimistic and pessimistic representation. These models among others will be used in an optimisation to identify the best gas turbine design with respect to thermal efficiency. The consideration of the secondary air system and blade metal temperatures ensure a realistic case study. At the end of this paper, sensitivity studies shed light on cycle design at uncertain combustor performance. The selected PGC models achieve an improvement in thermal efficiency between 3.8 – 6.6 percentage points compared to conventional isobaric combustion. However, this is less than half the 13.3 percentage points gain promised by ideal isochoric combustion. |
Zurück [4]
Nach oben
-advanced-cycles-performance/297-gpps-bi-2019-198.html
rs/acp/GPPS-BJ-2019_paper_198.pdf
ameter/de/minhilfe/?no_cache=1&tx_sibibtex_pi1%5Bdo
wnload_bibtex_uid%5D=9092840&tx_sibibtex_pi1%5Bcont
entelement%5D=tt_content%3A990794
ameter/de/minhilfe/
Zusatzinformationen / Extras
Direktzugang
Schnellnavigation zur Seite über Nummerneingabe
Hilfsfunktionen
Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008